

Combined Radar and Optical Flow Navigation for Flying Robots in Urban Areas

> Leland Pierce Sean Humbert Steve Gerardi Kamal Sarabandi Meysam Moallem

The Univ of Michigan and The Univ of Maryland

• The scenario: How to autonomously navigate a flying robot in an outdoor urban area, exploring the area without crashing.

• The issues:

- Low power, size, weight
- Inertial hardware too inaccurate, slow
- Optical stereo too short-range

The proposed solution:

- Use optical flow to get inertial information.
- Calibrate optical flow with radar.

• The research:

- Simulate a new radar that is being custom built for this purpose. (Michigan team)
- Combine with optical-flow based navigation simulator to verify feasibility (Maryland team)

Proposed Radar Design

Proposed Radar Design

3.2 cm Wavelength 1.2 mm Peak Tx power 5 dBm **Rx Array** -135 dBm Rx Sensitivity Tx Array < with 5 dB SNR Beamwidth Az: 2[°] El: 8[°] Antenna gain 32 dB Polarization Vertical 4.2 2 cm³ Volume cm 5 g Weight Waveform 10-00-0 Stepped FMCW Field of View ±25deg Frame update 33 ms Alias-free 400m range 37.5 cm Range resolution

Waveform Generator

20~80 GHz components: *TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.* 5 VCO, Doublers, Amplifiers

Radar Waveform: Stepped FMCW Signal

Alias-free range 400m, range resolution 0.375m, 16 bit A/D

RNFC

	Power	Weight	Dimensions
VCO	10mW	4.6mg	4 (mm²)
Multiplier chain	80mW	0.5g	1cm×1cm
240 GHz Amplifier	50mW	0.1g	
Antennas/frame	0	3.9g	$4.2 \times 3.2 \times 0.15$ cm ³
LNA+Mixer	50mW	0.2g	
IF Amplifier	10mW	0.1g	
Processor	250mW	0.2g	22 ×0.025 cm³
Total	200mW	5g	$4.2 \times 3.2 \times 0.15 = 2 \text{ cm}^3$

30 frames/sec (continuous operation): 200mw

- 1 frame/sec (duty cycle 3.33%): 6.7 mW
- 1 frame per 3sec (duty cycle1.1%): 2.22mW

An instrumentation radar operating at 215 GHz was used to measure the reflectivity properties of various targets for inclusion in the simulator's material database.

RDECON

8

Radar Simulator Operation

Simulation based on ray-tracing within 3D scene geometry in order to obtain reflections from specific objects, with known materials, incidence angle, and range.

Each range bin a summation of contributions from 100's of rays.

Details:

 $P_{rcvd} = G_{xmit}G_{trans}P_{transm} \sigma^{\circ}(\theta^{inc}) / (4 \pi R^4) + Noise_{rcvr}$ where G's are antenna gains,

P's are powers transmitted and received.
σ°(θ^{inc}) is the reflectivity properties
R is the range to the target
Noise eventually swamps distant returns.

Radar/optical-flow Navigation

Example of radar simulation of a flying robot over an urban scene:

RDECOM

R

Derivative[Image(θ, ϕ, t)] = ∂ Image / $\partial \theta \cdot \partial \theta$ / ∂t + ∂ Image / $\partial \phi \cdot \partial \phi$ / ∂t + ∂ Image / ∂t \cong 0

 Solve for V_θ, V_φ by assuming constant over a few pixels.

S. Gerardi www.avl.umd.edu

- Can directly obtain angular velocity
- Can also get linear velocity, within a constant.
- If have range to the target for each pixel, can convert to absolute linear velocity.
- Use the radar in order to calibrate the linear velocity measurements.

S. Gerardi www.avl.umd.edu

- Both modalities are noisy, so average both over a 15° ×15° region.
- Field-of-view is assumed to cover the entire lower hemisphere.
- Use 100 points equally spaced in this hemisphere.
- Current radar design does not provide this geometry in a single frame, but could be used to estimate it as the robot flies.
- Moving-window average for 0.05 sec: 20 frames/sec

- Created a 3D model of an area in Fort Benning with lots of buildings.
- Intent was to explore the area:
 - stay away from building walls
 - forward velocity of 1m/sec
 - keep altitude of about 1 meter
 - no path specified
- Simulated vehicle was a quad-rotor.
- Controller was able to vary throttle and pitch.

RNEE

Successfully combined optical flow/radar navigation over a simulated Fort Benning scene:

S. Gerardi www.avl.umd.edu

RDECON

Simulation Results

S. Gerardi www.avl.umd.edu

RDECOM

Simulation Results

www.avl.umd.edu

- Simulations showed successful autonomous navigation in a simulated urban environment:
 - Worst-case velocity error: 7cm/sec
 - Worst-case angular error: 5°/sec
- This, despite noisy measurements and 30cm radar range resolution.
- Would like to improve this so that the radar model is more realistic:
 - forward-looking, not hemispherical
- Increase forward velocity to about 10m/sec
- Radar-only navigation

S. Gerardi www.avl.umd.edu